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Abstract

Text classification is an important and classical problem in
natural language processing. There have been a number of
studies that applied convolutional neural networks (convolu-
tion on regular grid, e.g., sequence) to classification. How-
ever, only a limited number of studies have explored the more
flexible graph convolutional neural networks (convolution on
non-grid, e.g., arbitrary graph) for the task. In this work, we
propose to use graph convolutional networks for text classi-
fication. We build a single text graph for a corpus based on
word co-occurrence and document word relations, then learn
a Text Graph Convolutional Network (Text GCN) for the cor-
pus. Our Text GCN is initialized with one-hot representation
for word and document, it then jointly learns the embeddings
for both words and documents, as supervised by the known
class labels for documents. Our experimental results on mul-
tiple benchmark datasets demonstrate that a vanilla Text GCN
without any external word embeddings or knowledge outper-
forms state-of-the-art methods for text classification. On the
other hand, Text GCN also learns predictive word and docu-
ment embeddings. In addition, experimental results show that
the improvement of Text GCN over state-of-the-art compar-
ison methods become more prominent as we lower the per-
centage of training data, suggesting the robustness of Text
GCN to less training data in text classification.

Introduction
Text classification is a fundamental problem in natural lan-
guage processing (NLP). There are numerous applications
of text classification such as document organization, news
filtering, spam detection, opinion mining, and computa-
tional phenotyping (Aggarwal and Zhai 2012; Zeng et al.
2018). An essential intermediate step for text classification
is text representation. Traditional methods represent text
with hand-crafted features, such as sparse lexical features
(e.g., bag-of-words and n-grams). Recently, deep learning
models have been widely used to learn text representa-
tions, including convolutional neural networks (CNN) (Kim
2014) and recurrent neural networks (RNN) such as long
short-term memory (LSTM) (Hochreiter and Schmidhuber
1997). As CNN and RNN prioritize locality and sequential-
ity (Battaglia et al. 2018), these deep learning models can

∗Corresponding Author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

capture semantic and syntactic information in local consec-
utive word sequences well, but may ignore global word co-
occurrence in a corpus which carries non-consecutive and
long-distance semantics (Peng et al. 2018).

Recently, a new research direction called graph neural
networks or graph embeddings has attracted wide atten-
tion (Battaglia et al. 2018; Cai, Zheng, and Chang 2018).
Graph neural networks have been effective at tasks thought
to have rich relational structure and can preserve global
structure information of a graph in graph embeddings.

In this work, we propose a new graph neural network-
based method for text classification. We construct a single
large graph from an entire corpus, which contains words and
documents as nodes. We model the graph with a Graph Con-
volutional Network (GCN) (Kipf and Welling 2017), a sim-
ple and effective graph neural network that captures high
order neighborhoods information. The edge between two
word nodes is built by word co-occurrence information and
the edge between a word node and document node is built
using word frequency and word’s document frequency. We
then turn text classification problem into a node classifica-
tion problem. The method can achieve strong classification
performances with a small proportion of labeled documents
and learn interpretable word and document node embed-
dings. Our source code is available at https://github.
com/yao8839836/text_gcn. To summarize, our con-
tributions are as follows:

• We propose a novel graph neural network method for text
classification. To the best of our knowledge, this is the
first study to model a whole corpus as a heterogeneous
graph and learn word and document embeddings with
graph neural networks jointly.

• Results on several benchmark datasets demonstrate that
our method outperforms state-of-the-art text classifica-
tion methods, without using pre-trained word embeddings
or external knowledge. Our method also learn predictive
word and document embeddings automatically.

Related Work
Traditional Text Classification
Traditional text classification studies mainly focus on fea-
ture engineering and classification algorithms. For feature
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engineering, the most commonly used feature is the bag-
of-words feature. In addition, some more complex features
have been designed, such as n-grams (Wang and Manning
2012) and entities in ontologies (Chenthamarakshan et al.
2011). There are also existing studies on converting texts to
graphs and perform feature engineering on graphs and sub-
graphs (Luo, Uzuner, and Szolovits 2016; Rousseau, Kia-
gias, and Vazirgiannis 2015; Skianis, Rousseau, and Vazir-
giannis 2016; Luo et al. 2014; Luo et al. 2015). Unlike these
methods, our method can learn text representations as node
embeddings automatically.

Deep Learning for Text Classification
Deep learning text classification studies can be catego-
rized into two groups. One group of studies focused on
models based on word embeddings (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014). Several recent
studies showed that the success of deep learning on text clas-
sification largely depends on the effectiveness of the word
embeddings (Shen et al. 2018; Joulin et al. 2017; Wang
et al. 2018). Some authors aggregated unsupervised word
embeddings as document embeddings then fed these docu-
ment embeddings into a classifier (Le and Mikolov 2014;
Joulin et al. 2017). Others jointly learned word/document
and document label embeddings (Tang, Qu, and Mei 2015;
Wang et al. 2018). Our work is connected to these meth-
ods, the major difference is that these methods build text
representations after learning word embeddings while we
learn word and document embeddings simultaneously for
text classification.

Another group of studies employed deep neural networks.
Two representative deep networks are CNN and RNN. (Kim
2014) used CNN for sentence classification. The archi-
tecture is a direct application of CNNs as used in com-
puter vision but with one dimensional convolutions. (Zhang,
Zhao, and LeCun 2015) and (Conneau et al. 2017) designed
character level CNNs and achieved promising results. (Tai,
Socher, and Manning 2015), (Liu, Qiu, and Huang 2016)
and (Luo 2017) used LSTM, a specific type of RNN, to
learn text representation. To further increase the represen-
tation flexibility of such models, attention mechanisms have
been introduced as an integral part of models employed for
text classification (Yang et al. 2016; Wang et al. 2016). Al-
though these methods are effective and widely used, they
mainly focus on local consecutive word sequences, but do
not explicitly use global word co-occurrence information in
a corpus.

Graph Neural Networks
The topic of Graph Neural Networks has received grow-
ing attentions recently (Cai, Zheng, and Chang 2018;
Battaglia et al. 2018). A number of authors generalized
well-established neural network models like CNN that ap-
ply to regular grid structure (2-d mesh or 1-d sequence) to
work on arbitrarily structured graphs (Bruna et al. 2014;
Henaff, Bruna, and LeCun 2015; Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017). In their pi-
oneering work, Kipf and Welling presented a simplified
graph neural network model, called graph convolutional

networks (GCN), which achieved state-of-the-art classifi-
cation results on a number of benchmark graph datasets
(Kipf and Welling 2017). GCN was also explored in sev-
eral NLP tasks such as semantic role labeling (Marcheggiani
and Titov 2017), relation classification (Li, Jin, and Luo
2018) and machine translation (Bastings et al. 2017), where
GCN is used to encode syntactic structure of sentences.
Some recent studies explored graph neural networks for text
classification (Henaff, Bruna, and LeCun 2015; Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2017;
Peng et al. 2018; Zhang, Liu, and Song 2018). However,
they either viewed a document or a sentence as a graph of
word nodes (Defferrard, Bresson, and Vandergheynst 2016;
Peng et al. 2018; Zhang, Liu, and Song 2018) or relied on the
not-routinely-available document citation relation to con-
struct the graph (Kipf and Welling 2017). In contrast, when
constructing the corpus graph, we regard the documents and
words as nodes (hence heterogeneous graph) and do not re-
quire inter-document relations.

Method
Graph Convolutional Networks (GCN)
A GCN (Kipf and Welling 2017) is a multilayer neural net-
work that operates directly on a graph and induces embed-
ding vectors of nodes based on properties of their neigh-
borhoods. Formally, consider a graph G = (V,E), where
V (|V | = n) and E are sets of nodes and edges, respec-
tively. Every node is assumed to be connected to itself, i.e.,
(v, v) ∈ E for any v. LetX ∈ Rn×m be a matrix containing
all n nodes with their features, where m is the dimension of
the feature vectors, each row xv ∈ Rm is the feature vector
for v. We introduce an adjacency matrix A of G and its de-
gree matrixD, whereDii =

∑
j Aij . The diagonal elements

of A are set to 1 because of self-loops. GCN can capture in-
formation only about immediate neighbors with one layer
of convolution. When multiple GCN layers are stacked, in-
formation about larger neighborhoods are integrated. For a
one-layer GCN, the new k-dimensional node feature matrix
L(1) ∈ Rn×k is computed as

L(1) = ρ(ÃXW0) (1)

where Ã = D−
1
2AD−

1
2 is the normalized symmetric ad-

jacency matrix and W0 ∈ Rm×k is a weight matrix. ρ is
an activation function, e.g. a ReLU ρ(x) = max(0, x). As
mentioned before, one can incorporate higher order neigh-
borhoods information by stacking multiple GCN layers:

L(j+1) = ρ(ÃL(j)Wj) (2)

where j denotes the layer number and L(0) = X .

Text Graph Convolutional Networks (Text GCN)
We build a large and heterogeneous text graph which con-
tains word nodes and document nodes so that global word
co-occurrence can be explicitly modeled and graph convolu-
tion can be easily adapted, as shown in Figure 1. The number
of nodes in the text graph |V | is the number of documents
(corpus size) plus the number of unique words (vocabulary
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Figure 1: Schematic of Text GCN. Example taken from Ohsumed corpus. Nodes begin with “O” are document nodes, others
are word nodes. Black bold edges are document-word edges and gray thin edges are word-word edges. R(x) means the repre-
sentation (embedding) of x. Different colors mean different document classes (only four example classes are shown to avoid
clutter). CVD: Cardiovascular Diseases, Neo: Neoplasms, Resp: Respiratory Tract Diseases, Immun: Immunologic Diseases.

size) in a corpus. We simply set feature matrix X = I as
an identity matrix which means every word or document is
represented as a one-hot vector as the input to Text GCN.
We build edges among nodes based on word occurrence in
documents (document-word edges) and word co-occurrence
in the whole corpus (word-word edges). The weight of the
edge between a document node and a word node is the
term frequency-inverse document frequency (TF-IDF) of the
word in the document, where term frequency is the number
of times the word appears in the document, inverse docu-
ment frequency is the logarithmically scaled inverse frac-
tion of the number of documents that contain the word. We
found using TF-IDF weight is better than using term fre-
quency only. To utilize global word co-occurrence informa-
tion, we use a fixed size sliding window on all documents
in the corpus to gather co-occurrence statistics. We employ
point-wise mutual information (PMI), a popular measure for
word associations, to calculate weights between two word
nodes. We also found using PMI achieves better results than
using word co-occurrence count in our preliminary exper-
iments. Formally, the weight of edge between node i and
node j is defined as

Aij =


PMI(i, j) i, j are words, PMI(i, j) > 0

TF-IDFij i is document, j is word
1 i = j

0 otherwise

(3)

The PMI value of a word pair i, j is computed as

PMI(i, j) = log
p(i, j)

p(i)p(j)
(4)

p(i, j) =
#W (i, j)

#W
(5)

p(i) =
#W (i)

#W
(6)

where #W (i) is the number of sliding windows in a cor-
pus that contain word i, #W (i, j) is the number of sliding

windows that contain both word i and j, and #W is the
total number of sliding windows in the corpus. A positive
PMI value implies a high semantic correlation of words in
a corpus, while a negative PMI value indicates little or no
semantic correlation in the corpus. Therefore, we only add
edges between word pairs with positive PMI values.

After building the text graph, we feed the graph into a sim-
ple two layer GCN as in (Kipf and Welling 2017), the second
layer node (word/document) embeddings have the same size
as the labels set and are fed into a softmax classifier:

Z = softmax(Ã ReLU(ÃXW0)W1) (7)

where Ã = D−
1
2AD−

1
2 is the same as in equation 1, and

softmax(xi) = 1
Z exp(xi) with Z =

∑
i exp(xi). The loss

function is defined as the cross-entropy error over all labeled
documents:

L = −
∑
d∈YD

F∑
f=1

Ydf lnZdf (8)

where YD is the set of document indices that have labels
and F is the dimension of the output features, which is
equal to the number of classes. Y is the label indicator
matrix. The weight parameters W0 and W1 can be trained
via gradient descent. In equation 7, E1 = ÃXW0 con-
tains the first layer document and word embeddings and
E2 = Ã ReLU(ÃXW0)W1 contains the second layer doc-
ument and word embeddings. The overall Text GCN model
is schematically illustrated in Figure 1.

A two-layer GCN can allow message passing among
nodes that are at maximum two steps away. Thus although
there is no direct document-document edges in the graph,
the two-layer GCN allows the information exchange be-
tween pairs of documents. In our preliminary experiment.
We found that a two-layer GCN performs better than a one-
layer GCN, while more layers did not improve the perfor-
mances. This is similar to results in (Kipf and Welling 2017)
and (Li, Han, and Wu 2018).



Experiment
In this section we evaluate our Text Graph Convolutional
Networks (Text GCN) on two experimental tasks. Specifi-
cally we want to determine:

• Can our model achieve satisfactory results in text classifi-
cation, even with limited labeled data?

• Can our model learn predictive word and document em-
beddings?

Baselines. We compare our Text GCN with multiple state-
of-the-art text classification and embedding methods as fol-
lows:

• TF-IDF + LR : bag-of-words model with term frequency-
inverse document frequency weighting. Logistic Regres-
sion is used as the classifier.

• CNN: Convolutional Neural Network (Kim 2014). We ex-
plored CNN-rand which uses randomly initialized word
embeddings and CNN-non-static which uses pre-trained
word embeddings.

• LSTM: The LSTM model defined in (Liu, Qiu, and
Huang 2016) which uses the last hidden state as the rep-
resentation of the whole text. We also experimented with
the model with/without pre-trained word embeddings.

• Bi-LSTM: a bi-directional LSTM, commonly used in text
classification. We input pre-trained word embeddings to
Bi-LSTM.

• PV-DBOW: a paragraph vector model proposed by (Le
and Mikolov 2014), the orders of words in text are ig-
nored. We used Logistic Regression as the classifier.

• PV-DM: a paragraph vector model proposed by (Le and
Mikolov 2014), which considers the word order. We used
Logistic Regression as the classifier.

• PTE: predictive text embedding (Tang, Qu, and Mei
2015), which firstly learns word embedding based on het-
erogeneous text network containing words, documents
and labels as nodes, then averages word embeddings as
document embeddings for text classification.

• fastText: a simple and efficient text classification
method (Joulin et al. 2017), which treats the average
of word/n-grams embeddings as document embeddings,
then feeds document embeddings into a linear classifier.
We evaluated it with and without bigrams.

• SWEM: simple word embedding models (Shen et al.
2018), which employs simple pooling strategies operated
over word embeddings.

• LEAM: label-embedding attentive models (Wang et al.
2018), which embeds the words and labels in the same
joint space for text classification. It utilizes label descrip-
tions.

• Graph-CNN-C: a graph CNN model that operates con-
volutions over word embedding similarity graphs (Deffer-
rard, Bresson, and Vandergheynst 2016), in which Cheby-
shev filter is used.

• Graph-CNN-S: the same as Graph-CNN-C but using
Spline filter (Bruna et al. 2014).

• Graph-CNN-F: the same as Graph-CNN-C but using
Fourier filter (Henaff, Bruna, and LeCun 2015).

Datasets. We ran our experiments on five widely used
benchmark corpora including 20-Newsgroups (20NG),
Ohsumed, R52 and R8 of Reuters 21578 and Movie Review
(MR).

• The 20NG dataset1 (bydate version) contains 18,846 doc-
uments evenly categorized into 20 different categories. In
total, 11,314 documents are in the training set and 7,532
documents are in the test set.

• The Ohsumed corpus2 is from the MEDLINE database,
which is a bibliographic database of important medical lit-
erature maintained by the National Library of Medicine.
In this work, we used the 13,929 unique cardiovascular
diseases abstracts in the first 20,000 abstracts of the year
1991. Each document in the set has one or more associ-
ated categories from the 23 disease categories. As we fo-
cus on single-label text classification, the documents be-
longing to multiple categories are excluded so that 7,400
documents belonging to only one category remain. 3,357
documents are in the training set and 4,043 documents are
in the test set.

• R52 and R83 (all-terms version) are two subsets of the
Reuters 21578 dataset. R8 has 8 categories, and was split
to 5,485 training and 2,189 test documents. R52 has 52
categories, and was split to 6,532 training and 2,568 test
documents.

• MR is a movie review dataset for binary sentiment clas-
sification, in which each review only contains one sen-
tence (Pang and Lee 2005)4. The corpus has 5,331 posi-
tive and 5,331 negative reviews. We used the training/test
split in (Tang, Qu, and Mei 2015)5.

We first preprocessed all the datasets by cleaning and tok-
enizing text as (Kim 2014). We then removed stop words
defined in NLTK6 and low frequency words appearing less
than 5 times for 20NG, R8, R52 and Ohsumed. The only
exception was MR, we did not remove words after cleaning
and tokenizing raw text, as the documents are very short.
The statistics of the preprocessed datasets are summarized
in Table 1.

Settings. For Text GCN, we set the embedding size of the
first convolution layer as 200 and set the window size as
20. We also experimented with other settings and found that
small changes did not change the results much. We tuned
other parameters and set the learning rate as 0.02, dropout

1http://qwone.com/˜jason/20Newsgroups/
2http://disi.unitn.it/moschitti/corpora.htm
3https://www.cs.umb.edu/˜smimarog/textmining/datasets/
4http://www.cs.cornell.edu/people/pabo/movie-review-data/
5https://github.com/mnqu/PTE/tree/master/data/mr
6http://www.nltk.org/
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Table 1: Summary statistics of datasets.
Dataset # Docs # Training # Test # Words # Nodes # Classes Average Length
20NG 18,846 11,314 7,532 42,757 61,603 20 221.26

R8 7,674 5,485 2,189 7,688 15,362 8 65.72
R52 9,100 6,532 2,568 8,892 17,992 52 69.82

Ohsumed 7,400 3,357 4,043 14,157 21,557 23 135.82
MR 10,662 7,108 3,554 18,764 29,426 2 20.39

Table 2: Test Accuracy on document classification task. We run all models 10 times and report mean± standard deviation. Text
GCN significantly outperforms baselines on 20NG, R8, R52 and Ohsumed based on student t-test (p < 0.05).

Model 20NG R8 R52 Ohsumed MR
TF-IDF + LR 0.8319 ± 0.0000 0.9374 ± 0.0000 0.8695 ± 0.0000 0.5466 ± 0.0000 0.7459 ± 0.0000

CNN-rand 0.7693 ± 0.0061 0.9402 ± 0.0057 0.8537 ± 0.0047 0.4387 ± 0.0100 0.7498 ± 0.0070
CNN-non-static 0.8215 ± 0.0052 0.9571 ± 0.0052 0.8759 ± 0.0048 0.5844 ± 0.0106 0.7775 ± 0.0072

LSTM 0.6571 ± 0.0152 0.9368 ± 0.0082 0.8554 ± 0.0113 0.4113 ± 0.0117 0.7506 ± 0.0044
LSTM (pretrain) 0.7543 ± 0.0172 0.9609 ± 0.0019 0.9048 ± 0.0086 0.5110 ± 0.0150 0.7733 ± 0.0089

Bi-LSTM 0.7318 ± 0.0185 0.9631 ± 0.0033 0.9054 ± 0.0091 0.4927 ± 0.0107 0.7768 ± 0.0086
PV-DBOW 0.7436 ± 0.0018 0.8587 ± 0.0010 0.7829 ± 0.0011 0.4665 ± 0.0019 0.6109 ± 0.0010

PV-DM 0.5114 ± 0.0022 0.5207 ± 0.0004 0.4492 ± 0.0005 0.2950 ± 0.0007 0.5947 ± 0.0038
PTE 0.7674 ± 0.0029 0.9669 ± 0.0013 0.9071 ± 0.0014 0.5358 ± 0.0029 0.7023 ± 0.0036

fastText 0.7938 ± 0.0030 0.9613 ± 0.0021 0.9281 ± 0.0009 0.5770 ± 0.0049 0.7514 ± 0.0020
fastText (bigrams) 0.7967 ± 0.0029 0.9474 ± 0.0011 0.9099 ± 0.0005 0.5569 ± 0.0039 0.7624 ± 0.0012

SWEM 0.8516 ± 0.0029 0.9532 ± 0.0026 0.9294 ± 0.0024 0.6312 ± 0.0055 0.7665 ± 0.0063
LEAM 0.8191 ± 0.0024 0.9331 ± 0.0024 0.9184 ± 0.0023 0.5858 ± 0.0079 0.7695 ± 0.0045

Graph-CNN-C 0.8142 ± 0.0032 0.9699 ± 0.0012 0.9275 ± 0.0022 0.6386 ± 0.0053 0.7722 ± 0.0027
Graph-CNN-S – 0.9680 ± 0.0020 0.9274 ± 0.0024 0.6282 ± 0.0037 0.7699 ± 0.0014
Graph-CNN-F – 0.9689 ± 0.0006 0.9320 ± 0.0004 0.6304 ± 0.0077 0.7674 ± 0.0021

Text GCN 0.8634 ± 0.0009 0.9707 ± 0.0010 0.9356 ± 0.0018 0.6836 ± 0.0056 0.7674 ± 0.0020

rate as 0.5, L2 loss weight as 0. We randomly selected 10%
of training set as validation set. Following (Kipf and Welling
2017), we trained Text GCN for a maximum of 200 epochs
using Adam (Kingma and Ba 2015) and stop training if the
validation loss does not decrease for 10 consecutive epochs.
For baseline models, we used default parameter settings as
in their original papers or implementations. For baseline
models using pre-trained word embeddings, we used 300-
dimensional GloVe word embeddings (Pennington, Socher,
and Manning 2014)7.

Test Performance. Table 2 presents test accuracy of each
model. Text GCN performs the best and significantly outper-
forms all baseline models (p < 0.05 based on student t-test)
on four datasets, which showcases the effectiveness of the
proposed method on long text datasets. For more in-depth
performance analysis, we note that TF-IDF + LR performs
well on long text datasets like 20NG and can outperform
CNN with randomly initialized word embeddings. When
pre-trained GloVe word embeddings are provided, CNN
performs much better, especially on Ohsumed and 20NG.
CNN also achieves the best results on short text dataset
MR with pre-trained word embeddings, which shows it can

7http://nlp.stanford.edu/data/glove.6B.zip

model consecutive and short-distance semantics well. Simi-
larly, LSTM-based models also rely on pre-trained word em-
beddings and tend to perform better when documents are
shorter. PV-DBOW achieves comparable results to strong
baselines on 20NG and Ohsumed, but the results on shorter
text are clearly inferior to others. This is likely due to the
fact that word orders are important in short text or sentiment
classification. PV-DM performs worse than PV-DBOW, the
only comparable results are on MR, where word orders are
more essential. The results of PV-DBOW and PV-DM in-
dicate that unsupervised document embeddings are not very
discriminative in text classification. PTE and fastText clearly
outperform PV-DBOW and PV-DM because they learn doc-
ument embeddings in a supervised manner so that label in-
formation can be utilized to learn more discriminative em-
beddings. The two recent methods SWEM and LEAM per-
form quite well, which demonstrates the effectiveness of
simple pooling methods and label descriptions/embeddings.
Graph-CNN models also show competitive performances.
This suggests that building word similarity graph using pre-
trained word embeddings can preserve syntactic and seman-
tic relations among words, which can provide additional in-
formation in large external text data.

The main reasons why Text GCN works well are two fold:
1) the text graph can capture both document-word relations



and global word-word relations; 2) the GCN model, as a spe-
cial form of Laplacian smoothing, computes the new fea-
tures of a node as the weighted average of itself and its
second order neighbors (Li, Han, and Wu 2018). The la-
bel information of document nodes can be passed to their
neighboring word nodes (words within the documents), then
relayed to other word nodes and document nodes that are
neighbor to the first step neighboring word nodes. Word
nodes can gather comprehensive document label informa-
tion and act as bridges or key paths in the graph, so that label
information can be propagated to the entire graph. However,
we also observed that Text GCN did not outperform CNN
and LSTM-based models on MR. This is because GCN ig-
nores word orders that are very useful in sentiment classifi-
cation, while CNN and LSTM model consecutive word se-
quences explicitly. Another reason is that the edges in MR
text graph are fewer than other text graphs, which limits
the message passing among the nodes. There are only few
document-word edges because the documents are very short.
The number of word-word edges is also limited due to the
small number of sliding windows. Nevertheless, CNN and
LSTM rely on pre-trained word embeddings from external
corpora while Text GCN only uses information in the target
input corpus.
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Figure 2: Test accuracy with different sliding window sizes.
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Figure 3: Test accuracy by varying embedding dimensions.

Parameter Sensitivity. Figure 2 shows test accuracies
with different sliding window sizes on R8 and MR. We can
see that test accuracy first increases as window size becomes
larger, but the average accuracy stops increasing when win-
dow size is larger than 15. This suggests that too small
window sizes could not generate sufficient global word co-
occurrence information, while too large window sizes may
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Figure 4: Test accuracy by varying training data proportions.
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Figure 5: The t-SNE visualization of test set document em-
beddings in 20NG.

add edges between nodes that are not very closely related.
Figure 3 depicts the classification performance on R8 and
MR with different dimensions of the-first layer embeddings.
We observed similar trends as in Figure 2. Too low dimen-
sional embeddings may not propagate label information to
the whole graph well, while high dimensional embeddings
do not improve classification performances and may cost
more training time.

Effects of the Size of Labeled Data. In order to evalu-
ate the effect of the size of the labeled data, we tested sev-
eral best performing models with different proportions of the
training data. Figure 4 reports test accuracies with 1%, 5%,
10% and 20% of original 20NG and R8 training set. We note
that Text GCN can achieve higher test accuracy with limited
labeled documents. For instance, Text GCN achieves a test
accuracy of 0.8063± 0.0025 on 20NG with only 20% train-
ing documents and a test accuracy of 0.8830 ± 0.0027 on
R8 with only 1% training documents which are higher than
some baseline models with even the full training documents.
These encouraging results are similar to results in (Kipf and
Welling 2017) where GCN can perform quite well with low
label rate, which again suggests that GCN can propagate
document label information to the entire graph well and our



Table 3: Words with highest values for several classes in
20NG. Second layer word embeddings are used. We show
top 10 words for each class.

comp.graphics sci.space sci.med rec.autos
jpeg space candida car

graphics orbit geb cars
image shuttle disease v12

gif launch patients callison
3d moon yeast engine

images prb msg toyota
rayshade spacecraft vitamin nissan
polygon solar syndrome v8

pov mission infection mustang
viewer alaska gordon eliot
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Figure 6: The t-SNE visualization of the second layer word
embeddings (20 dimensional) learned from 20NG. We set
the dimension with the largest value as a word’s label.

word document graph preserves global word co-occurrence
information.

Document Visualization. We give an illustrative visual-
ization of the document embeddings leaned by Text GCN.
We use t-SNE tool (Maaten and Hinton 2008) to visualize
the learned document embeddings. Figure 5 shows the visu-
alization of 200 dimensional 20NG test document embed-
dings learned by GCN (first layer), PV-DBOW and PTE.
We also show 20 dimensional second layer test document
embeddings of Text GCN. We observe that Text GCN can
learn more discriminative document embeddings, and the
second layer embeddings are more distinguishable than the
first layer.

Word Visualization. We also qualitatively visualize word
embeddings learned by Text GCN. Figure 6 shows the t-SNE
visualization of the second layer word embeddings learned
from 20NG. We set the dimension with the highest value as
a word’s label. We can see that words with the same label
are close to each other, which means most words are closely
related to some certain document classes. We also show top
10 words with highest values under each class in Table 3. We
note that the top 10 words are interpretable. For example,
“jpeg”, “graphics” and “image” in column 1 can represent
the meaning of their label “comp.graphics” well. Words in
other columns can also indicate their label’s meaning.

Discussion. From experimental results, we can see the
proposed Text GCN can achieve strong text classification re-
sults and learn predictive document and word embeddings.
However, a major limitation of this study is that the GCN
model is inherently transductive, in which test document
nodes (without labels) are included in GCN training. Thus
Text GCN could not quickly generate embeddings and make
prediction for unseen test documents. Possible solutions to
the problem are introducing inductive (Hamilton, Ying, and
Leskovec 2017) or fast GCN model (Chen, Ma, and Xiao
2018).

Conclusion and Future Work
In this study, we propose a novel text classification method
termed Text Graph Convolutional Networks (Text GCN).
We build a heterogeneous word document graph for a whole
corpus and turn document classification into a node clas-
sification problem. Text GCN can capture global word co-
occurrence information and utilize limited labeled docu-
ments well. A simple two-layer Text GCN demonstrates
promising results by outperforming numerous state-of-the-
art methods on multiple benchmark datasets.

In addition to generalizing Text GCN model to inductive
settings, some interesting future directions include improv-
ing the classification performance using attention mecha-
nisms (Veličković et al. 2018) and developing unsupervised
text GCN framework for representation learning on large-
scale unlabeled text data.
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